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1 Basic Matrix Code

To begin, we will create code that represents matrices and performs ele-
mentary matrix operations, such as computing the inverse, multiplying, and
adding.

We will utilise Python to do so. Python has a data structure known as
a ”list” or an ”array.” These are essentially a collection of indexed data that
can be manipulated. Lists may contain sublists; it is in this way that we
can represent a ”matrix” in python, for indeed, a matrix is nothing but a
collection of row/column vectors, which themselves can be represented as an
individual python list.

We have decided to represent a matrix as a collection of row vectors.
For example consider the following matrix, A ∈ Rm×n:

A =


a1 a2 a3 ... an
b1 b2 b3 ... bn
... ... ... ... ...
m1 m2 m3 ... mn


with m rows and n columns. We choose to represent the same matrix, A

pythonically in the following way:

array = [

[a1, a2, a3, ..., aN],

[b1, b2, b3, ..., bN],

[c1, c2, c3, ..., cN],

...,

[m, m2, m3, ..., mN],

]
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In this way, each sublist is a row of the matrix.
In the following we, will discuss how to code basic matrix operations using

this data structure.

1.1 Multiplying a Matrix by a Scalar

One of the most crucial elements of matrix arithmetic is the ability to mul-
tiply a given matrix by a scalar. When doing this, the following will hold
true:

∀λ ∈ R,∀A ∈ Rm×n, λA =


λa1 λa2 λa3 ... λan
λb1 λb2 λb3 ... λbn
... ... ... ... ...

λm1 λm2 λm3 ... λmn

 ,

This is a rather simple problem to tackle. Simply, we iterate through each
row of the matrix, and then through each element (column) within that row,
multiplying each entry by a given λ as we iterate. This produces a matrix
that has been multiplied by lambda. The code is as follows:

def matrix_by_scalar(matrix1, scalar_quantity):

’’’

TAKES:

A matrix of the form outlined above, matrix1

A scalar_quantity by which the matrix will be multiplied

RETURNS:

A matrix of the form outlined above

’’’

try:

if (isinstance(scalar_quantity, int)) or

(isinstance(scalar_quantity, float)):

# O(1) we wcheck if the scalar element is a valid real

number; if not, we raise an error.

return list([element * scalar_quantity for element in

row] \

for row in matrix1) # O(n**2) This comprehension

multiplies each element of each row by the

scalar and thus has a time complexity of n**2
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else: raise ValueError(f"Argument passed:

’{scalar_quantity}’. Error: Expected argument of type

’int’ or ’float’ ") # error raised

except: # In Case something goes wrong; biggest error here is

the potential for incorrect args passed

print("something went wrong - likely the matrix argument

was incorrect")

1.2 Adding Two Matrices

The addition of matrices is an elementwise one, and therefore it is easy to
implemenent iteratively and makes lots of intuiative sense. What is meant
by elementwise is that we can handle each element individually; in the case of
matrix addition, we add each element of a given matrix to the corresponding
element of a separate matrix. We can assert that the matrices must therefore
be the of the same dimension to be added.

Essentially, we have the following for ∀A,B ∈ Rm×n, where i = 1, ...,m
and j = 1, ..., n

A+B =


A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

... ... ... ...
Ai,1 Ai,2 ... Ai,j

+


B1,1 B1,2 ... B1,j

B2,1 B2,2 ... B2,j

... ... ... ...
Bi,1 Bi,2 ... Bi,j



=


A1,1 +B1,1 A1,2 +B1,2 ... A1,j +B1,j

A2,1 +B2,1 A2,2 +B2,2 ... A2,j +B2,j

... ... ... ...
Ai,1 +Bi,1 Ai,2 +Bi,2 ... Ai,j +Bi,j


The code looks as follows:

def add_matrices(mat1, mat2):

’’’

TAKES:

two matrices of the standard form outlined previously, mat1

and mat2

They must be of the same dimensions

RETURNS:

A single matrix of the same dimensions as mat1 and mat2,

where this matrix is the sum of mat1 and mat2

’’’
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if (len(mat1) == (len(mat2)) and (len(mat1[0]) ==

len(mat2[0]))): # check to see if possible to add the two

lists, as their dimensions must be the same

’’’

The following is just a long list comprehension that

iterates through each matrix and adds corresponding

elements. It then appends these to "l", which is what is

ultimately what is returned

’’’

# basically just two for loops

l = list([mat1[row][col]+mat2[row][col] \

for col in range(len(mat1[0]))] \

for row in range(len(mat1)))

return l

# Intuitively subtraction is very similar: the "+" must be

turned to a "-"

else: # if the matrices are not of the same size.

raise ValueError("Args are different size and thus cannot

be added")

This code will hold for subtraction as well, because of the following iden-
tity:

A−B =


A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

... ... ... ...
Ai,1 Ai,2 ... Ai,j

−


B1,1 B1,2 ... B1,j

B2,1 B2,2 ... B2,j

... ... ... ...
Bi,1 Bi,2 ... Bi,j



=


A1,1 −B1,1 A1,2 −B1,2 ... A1,j −B1,j

A2,1 −B2,1 A2,2 −B2,2 ... A2,j −B2,j

... ... ... ...
Ai,1 −Bi,1 Ai,2 −Bi,2 ... Ai,j −Bi,j


where ∀A,B ∈ Rm×n, and i = 1, ...,m, j = 1, ..., n.
This implies that we must merely change the elementwise addition in our

code to subtraction in order to create a function that subracts two matrices.
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1.3 Transpose of a Matrix

The tranpose of a matrix is a modification to its structure such that rows
become columns and vice versa. That is, the first row of a given matrix A
will be the first column of it’s transpose, AT , the second row of A will be the
second column of AT , and so forth and so on.

A =


A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

... ... ... ...
Ai,1 Ai,2 ... Ai,j

 ∈ Rm×n, i = 1, ..., and j = 1, ..., n

Then,

AT =


A1,1 A2,1 ... Ai,1

A1,2 A2,2 ... Ai,2

... ... ... ...
A1,j A2,j ... Ai,j

 ∈ Rm×n, i = 1, ..., and j = 1, ..., n

In the case of square matrices, we can state the matrix has been ”flipped”
over it’s main diagonal, or the diagonal elements running from top-left to
bottom-right.
The transpose, as with matrix addition/subtraction and multiplying by a
scalar, is rather trivial to implement. We iterate through the columns of a
matrix, and return them to the user as rows of a new matrix, which is the
tranpose. In regards to greabbing the columns of a matrix: python provides
no way to index a column as simply as one can index a row. This is because,
as we have represented matrices with row vectors, the columns are comprised
of elements from mutliple different rows. Therefore, we construct a function
that enables us to quickly ”grab” a column from a matrix given its index.

def get_col(matrix_2d, _index):

return list(row[_index] for row in matrix_2d) # O(n) this

simply grabs the column from the specified index.

# full time O(n)

def transpose(matrix):

new_array = [get_col(matrix, i) for i in range(len(matrix[0]))]

# O(n) and nested O(n), becomes O(n**2). takes a column and

makes it a row
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return new_array

1.4 Row Reduction: Echelon/Upper Triangle Form

One of the most important matrix-manipulations is the ability to perform
elementary ”row operations” upon a matrix. That is, multiplying a row by a
scalar, swapping the position of two rows in a matrix, and adding/subtract-
ing a scalar multiple of one row to/from another. These operations have
incredibly useful properties, and are widely used to calculate determinants
and inverses of matrices, and additionally are used to solved systems of linear
equations using matrices.

These row operations allow one to effectively mutate a matrix into one of
many various forms; for example, we can row reduce such that what we are
left with is of the ”upper triangle” form, in which all elements not above or
in the main diagonal are 0.

This form is known as ”echelon” form, and the process to find it is called
”Gaussian Elimination.”

We begin the algorithm by swapping rows that need to be swapped.

def echelon(matrix):

# we will iterate through the columns

for col_index in range(len(matrix[0])):

col = get_col(matrix, col_index) #we grab the column using

the index from the above for loop

’’’

the following bit of code looks for places where there

might be zeroes in the diagonal.

if there are, and we do not handle for it, we will get a

divinding by zero error

We then swap the rows such that we can proceed

thus, the following code is quite necessary.

’’’

if col_index <= len(matrix): # O(1) we only need to look

for zeroes in the first square - that is, if the matrix

is longer than tall, it is uncessary to check all columns
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if all((i == 0) for i in col[col_index:]): #O(n) if the

entire column is filled with zeroes, we call

continue and the program returns to the initial for

loop, and goes to the next column

continue

elif col[col_index] == 0: # O(1) if one of the elements

on the diagonal is zero - this is where the dividing

by zero error occurs so we need to handle this

’’’

here we iterate through all of the rows below the

diagonal.

if we find a row that doesn’t contain a zero in the

diagonal column index,

we will swap them

’’’

for i in range(len(col[col_index:])): #O(n)

if col[col_index:][i] != 0: # O(1)

row_idx = col_index+i # O(1)

break

# the below line of code simple swaps the rows

matrix[col_index], matrix[row_idx] =

matrix[row_idx], matrix[col_index] # O(1)

Now that rows have been sufficiently swapped, we may begin subtracting
scalar multiples of rows from rows below it. This enables us to achieve a zero
in the desired spot. We will continue in the for loop that we currenly operate
in.

’’’

the following for loop is where the actual formula happens

the algorithm works as follows:

assume we have an array,

we have the nth column and we want to make all elements of

that column below

the nth row into 0

say n = 1 then we have:

c1 = [ desired_c1 = [

3 3

7



4 4

3 0

7 0

2 0

] ]

we can achieve this via subtracting a scalar multiple of

the row such that we get 0

ex: row 2. we can achieve row 1, col 2 equaling 0 by

subtracting row 1 *

matrix[row1_idx][col2_idx]/matrix[row1_idx][row_idx]

’’’

for row_index in range(len(col)): # O(n) we iterate through

row of each colum we have grabbed earlier

’’’

remember, we only want to turn the rows below

the diagonal into 0. thus, we check if the row is indeed

one we one to turn into 0

if it is not, its idx will be less than the column idx

if that proves to be true, we will simple pass

’’’

if row_index <= col_index: #O(1)n checks if the row is

one we do not want to turn to 0

’’’

the following if statement is unnecessary, as I

could have explicity called:

matrix[col_index][col_index] when I called

denominator later

matrix[col_index] when I call

raw_subtractant_row later

however, will keep this code for readability, as

I find this easier to understand.

’’’

if row_index == col_index: #O(1)

denominator = matrix[row_index][col_index] #O(1)

raw_subtractant_row = matrix[row_index] #O(1)

pass

else:

’’’

here we actually do the conversion to 0
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this finds teh numerator of the scalar we will

multiply the subtractant row by

then we will simply create the final subtractant row

then we simply subtract the two rows, resulting in a

0

we then replace the old row with the new one.

’’’

row_to_sub_from = matrix[row_index] # O(1)

numerator = matrix[row_index][col_index] #O(1)

subtractant = row_by_scalar(raw_subtractant_row,

(numerator/denominator)) # O(n)

subbed_row = subtract_row(row_to_sub_from,

subtractant) # O(1)

matrix[row_index] = subbed_row # O(1)

return matrix

1.5 Row Reduction: Row Echelon Form (REF)

Consider a matrix that has been reduced such that it is in echelon form,
where all elements below the main diagonal are 0. It is possible to reduce
a matrix further. Specifically, by identifying all non-zero diagonal elements
and dividing the rows in which they appear by the element itself, we can
get to a form similar to echelon form, but one where all non-zero diagonal
elements will be 1. This is ”row-echelon” form.

In other words, we can obtain the following, given A ∈ Rm×n and it is in
echelon form:

A =


A1,1 A1,2 ... A1,j

0 A2,2 ... A2,j

... ... ... ...
0 0 ... Ai,j



⇝


1 A1,2 ... A1,j

0 1 ... A2,j

... ... ... ...
0 0 ... 1


It it is easy to turn a matrix in echelon form into one in row-echelon, as

we must simply divide by the reciprocal of the diagonal element.
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1.6 Row-Reduced Echelon Form

This is an extension of the REF form, where the intended result is 1 along
the diagonal and zeros above and below the diagonal with constants on the
rightmost column. We do this by performing elementary row operations on
a matrix from the row below to the row above to eliminate the constant
terms with the exception of the diagonal. This method of elementary row
operations is called Gaussian Elimination.

A =


1 A1,2 ... A1,j

0 1 ... A2,j

... ... ... ...
0 0 ... 1



⇝


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1


def rref(matrix):

# takes matrix of form outlined in flowerbox

# returns matrix of form outlined in flowerbox, but in rref form

# builds off of the ref function, which produces an upper

triangle such that the leading elements of each row is 1

# rref returns a matrix such that all diagonals are 1 (which is

true in ref) but also as many other elements as possible

are 0

matrix = ref(matrix) # we apply ref to the matrix to make sure

it is in the appropriate form

mindim = min(len(matrix), len(matrix[0])) # the minimum

dimension of the matrix

for idx in reversed(range(mindim)):

# for above: we wantt to work up from the bottom of the

matrix, and will only use values that could have a pivot

’’’in other words, if

a = [

[1,3,8],

[12,3,4],

[16,7,1],

[2,1,6],
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[12,4,5],

[7,2,5]

]

then only the top 3 rows will have good pivots

O(n)

’’’

if matrix[idx][idx] != 0: # we know that where pivots

should be will only be 0s or 1s becuase of calling ref

# if it is not a one and is a 0,

then we will not evaluate and

will just skip in

for idx2 in reversed(range(idx)): # we then iterate

through all above rows O(n)

# here we find what we shoudl multiply matrix[idx]

by to subtract it from matrix[idx2]

# and then we simply run through that subtraction

scalar = matrix[idx2][idx] # O(1)

subtractant = row_by_scalar(matrix[idx], scalar)

#O(n)

row_to_sub_from = matrix[idx2] #(1)

subbed_row = subtract_row(row_to_sub_from,

subtractant) # O(n)

matrix[idx2] = subbed_row # O(1)

return matrix

# Full time O(n**3)

1.7 Finding Pivot Columns

As we discussed earlier in the RREF (Reduced Row Echelon Form) section,
our result from that operation is a matrix taken from upper triangle form to
one that has ones along its diagonal. In some cases, the matrix has linearly
dependent columns, in that case, we want to find the index of those columns
for all types of matrices, no matter the size. We iterate through each row
to find the first appearance of a 1 and check all prior elements to make sure
they are 0’s to account for non-square matrices.
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def identify_pivots(mat, rounded=True):

# takes matrix of form outlined in flowerbox

# returns a list of all indexes in which there is a pivot

column upon row reducing the input matrix

# identifies the pivot columns of the matrix by row reducing

matrix = mat.copy() # we make a copy because otherwise the

original matrix is modified and we get fucked

matrix = ref(matrix) # we run ref to row reduce it. we do not

care about full row reduction because that it is trivial in

this case

if rounded: # this combats error where 0.99999999999 is not

read as one, and therefore not read as a pivot

matrix = mround(matrix, 12)

pivot_col_idx_list = [] # we initialize a blank list will

contain indexes of pivot cols

for row in matrix: # we iterate through each row

try: # we add a try in case there are no ones in the row

first_one = row.index(1) # we find the first appearance

of a 1 within the list

for idx2 in range(first_one): # we then check if all

prior elelements are 0

if row[idx2] != 0: # if one is not a 0, we contiknue

the loops

continue

# however, if all elements prior to the first 1 are 0,

we will append the index of that 1 to the pivcollist

pivot_col_idx_list.append(first_one)

except: # if there are no ones, it can be infered that

there is no pivot column in that row, so we continue

continue

return pivot_col_idx_list
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# O(n**2) time

1.8 Finding the Determinant

The determinant is an extremely important scalar quality that provides in-
formation about a given matrix. It essentially gives the signed area of the
parallelepiped that is represented by the columns or rows of a matrix. If the
determinant is 0, it tells us that the area is 0 and therfore the matrix is not
of full rank.

There are many methods to find the determinant. First, we can use
Laplace Expansion to recursively break down a matrix into small dimensions
and calculate the determinants of such smaller matrices.

However, Laplace expansion is very slow; it is much faster to use an
alternative method to solve for the determinant. We can leverage two facts to
land on a faster method. First, if we subtract a multiple of a row from another
row, we do not change the value of the determinant. Second, the determinant
of a matrix in triangle-form is the product of its diagonal elements.

These two understandings let us know that by converting a matrix to
Echelon form, we can easily find it’s determinant by multiplying the diagonal
elements.

def matrix_det(matrix):

matrix = echelon(matrix)

det = 1

for idx in len(matrix):

det = det * matrix[idx][idx] # multiply all of the diagonal

elements

return det

1.9 Inverting a Matrix

Another incredibly important computation is the ability to find the inverse
of a given matrix. The inverse is a matrix that, when multiplied by the
original, will produce the identity matrix. In this way, it is useful because
we can somewhat simulate division with it.
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The easiest way to find an inverse is to augment the original matrix with
an identity matrix such that the original is on the left and the identity is on
the right. The, we will row reduce the matrix such that the left hand side
is in rref form, or in other words is an identity matrix. What is left on the
right hand side is the inverse.

It should be noted that only square matrices have inverses.

def inverse(matrix):

identity = make_identity(len(matrix))

dim_to_take = len(matrix[0])

matrix = append_mat_right(matrix, identity)

matrix = rref(matrix)

inverse = list()

for row in matrix:

inverse.append(row[-dim_to_take:])

return inverse

1.10 Multiplying Two Matrices

Multiplying two matrices is an elementary operation and the method to com-
puting it is by multiplying the 1st row vector of the first Matrix by the 1st
column vector of the second matrix. Therefore, if the dimensionality of the
column of the first matrix does not match the row of the second matrix, they
cannot be multiplied. The resulting dimensionality is the row of the first
matrix by the column of the second matrix.

A =


A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

... ... ... ...
Am,1 Am,2 ... Am,j



∗


A1,1 A1,2 ... A1,m

A2,1 A2,2 ... A2,m

... ... ... ...
Aj,1 Aj,2 ... Aj,m



14



def multiply_matrix(matrix1, matrix2):

# the first one goes second

’’’this function multiplies two matrices together

it takes each row and multiplies it by the column in the next

row’’’

# matrix1 row and column number. len() is O(1), constant time

matrix2_rows = len(matrix2)

matrix2_cols = len(matrix2[0]) # just taking the first. I

assume that each argument is a completely filled list

# matrix2 row and column number. still constant time

matrix1_rows = len(matrix1)

matrix1_cols = len(matrix1[0])

# makes sure that we can indeed mutliply these two matrices -

that is, their dimensions must be compatible

if (matrix2_rows == matrix1_cols) or (matrix2_cols ==

matrix1_rows):

# if mat1 rows and mat2 cols are equal we switch them so

the following code works

if (matrix2_rows == matrix1_cols):

matrix2, matrix1 = matrix1, matrix2

new_matrix = [] # making a new matrix to hold values

# iterates through each row of the first matrix

for m2_row in matrix2: # this line alone is O(n)

new_matrix_row = [] # O(1) creating a new list for just

the row we are doing

for _index in range(len(matrix1[0])): # this line is O(n)

’’’teh following, as a whole, is O(n) we will

mutliply the the two rows,

except that one of these these "rows" should be a

column

so we will use get_col() to grab it and pass it as

an argument.

this si ’’’
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new_matrix_row.append(multip_1row( # O(n)

m2_row,

get_col(matrix1, _index) # O(n)

))

new_matrix.append(new_matrix_row) # addif the new row to

a the full matrix

return new_matrix # we will return

else: # raises the error

raise ValueError("The dimensions of the arrays passed as \

arguments are incompatible and cannot be multiplied")

# full time O(n**3)

2 Vector(Sub)Spaces Pythonically

2.1 General Introduction to Vector Subspaces

A vector space is special type of a group that contains both an inner and outer
operation, which are addition and multiplication by a scalar, respectively.
Subspaces are, by proxy, spaces that retain the same properties and are a
part of the original vector space

Early on, we realized that it was impossible to represent an infinite series
of elements as a vector space in python, for example R2. We realized that
we would have to have the user to insert a matrix representing that vector
space. We created an umbrella class called ”subspace”. These are integral
to representing linear mappings pythonically.

Our subspace class is very broad, the operations done in the class are
more of a general operations as stated below.

2.2 Issues when Representing Subspaces Pythonically

As I said earlier, we cannot express common vector spaces used in linear
algebra and we had to settle for finite spaces. They would be in the form of:
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V =


A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

... ... ... ...
Aj,1 Aj,2 ... Aj,j

 ∈ Rj×j

j represents the general dimensionality of the vector space.

2.3 Defining a Space with a Basis

The definition of a basis is the set of linearly independent vectors that span a
space. These have many useful applications when it comes to linear mapping.

U = span(

01
2

 ,

11
2

 ,

22
4

)
Basis Vector

01
2


The code to do this involved taking the indexes of the pivot columns from

earlier and then mapping those to the original matrix. In the example above,
the pivot columns would be a list with index [0] since the original matrix’s
RREF form comes out to be 1 0 0

0 1 2
0 0 0

 (1)

def create_basis(self):

# we find the basis of generatign set

tempgset = self.gset # we create a temporary gset to not

modify the original

if self.columned == False: # if the input generating

vectors are row vecs
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tempgset = mp.transpose(tempgset) # we will make then

col vecs

holder = mp.identify_pivots(tempgset) # now we identify

pivots of the generating set, O(n**2)

return [self.gset[i] for i in holder] # then we will return

all of the vectors

Then any valid subspace is just the span of the linearly independent basis
vectors.

2.4 Orthonormality of Basis Vectors

Orthonormality of basis vectors is when basis vectors are the unit vectors
(the distance of the vector is 1) and if it is orthogonal (purpendicular). We
can find this by taking the dot product, a type of inner product defined as[
x y

]
·
[
a b

]
= xa+ yb. The following needs to be satisfied:

⟨x , y⟩ = 0
⟨x , x⟩ = 1

Here is our dot product code:

def dot(v1, v2):

# find the dot product of 2 vectors

if not(isinstance(v1[0], list)) and not(isinstance(v2[0],

list)) and (len(v1)==len(v2)):

# if we find that the vectors are not 1 dimensional or that

that they are different sizes

total = 0

for idx in range(len(v1)):

# multiply elementwise

total += v1[idx]*v2[idx]

return total

These are very important to rotations of vectors. Here is our impleme-
nentation of orthonormality:

def isorthonormal(self):

if self.columned == False: # if the input basis vecs are

18



row vecs, a

basis = mp.transpose(self.basis) # we will make them col

vecs, but will use a new var to not modify self.basis

else:

basis = self.basis # we don’t want to fuck with

self.basis

if len(basis) >= 2: # orthonormal must have at least two

basis vectors

for idx, vec1 in enumerate(basis): # now we run through

each basis vector O(n)

for vec2 in basis[idx+1:]: # we run through each

other basis vecor

if (dot(vec1, vec2) != 0) or (dot(vec1, vec1) !=

1): # if any of them do not pass the test

(<v1,v2> = 0 or <v1,v1> =1) (dot defined

lower)

return False # then we will return False

because all must pass the test

return True # otherwise, if False not returned yet, we

know it to be true

else: return False # if only one basis vec, nothing to be

orthonormal to

2.5 Projections

Projections are the act of taking a vector from a higher dimensional subspace
and projecting it into a lower dimensional space. We use the Gram-Schmidt
process; here is our code to do so:

def find_projection_mat(basis, columned=False):

# takes a basis, and assumes it is not columned. it must be

columnbed for us to continue.

if columned == False:

basis = mp.transpose(basis)

# is ortho check reserved for object
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psueod_inv =

mp.multiply_matrix(mp.inverse(mp.multiply_matrix(mp.transpose(basis),

basis)), mp.transpose(basis))

return mp.multiply_matrix(basis, psueod_inv)

def project_vector(vector, proj_mat, return_error=False):

’’’

if using sub_space obj, will look like newvec =

project_vector(vec, sub_space.proj_mat)

’’’

projected = mp.multiply_matrix(proj_mat, [vector])

if return_error == False:

return projected[0]

else:

return mp.mround(projected)[0],

euclidean_norm(mp.subtract_row(vector, projected[0]))

3 Representing Linear Mappings Pythonically

As stated earlier, we would use the user inputted matrix representations of
a vector space (generating set) and get a collection of basis vectors. A linear
mapping is a function that maps between 2 vector spaces and also prserves
the following rules:

T : x → y

T (x+ y) = T (x) + T (y)
T (ax) = aT (x)

where T is a function linearly mapping vector space x to y. In the case
of a code application, these would be finite vector spaces. To map a vector
from one space to another, we need to find the transition matrix from the
basis vectors we are converting with, which could even be 2 bases for each
vector space. We will cover that code in the next section. Assuming we have
the transition matrix, you can multiply that to the vector to recieve a vector
that has been mapped to a new vector space. We can map a given vector
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with this code:

def map(self, vector):

return self.apply(vector)

def apply_mapping(self, vector):

# expects a vector in the domain, not codomain

# expects a vector in the domain, not codomain, of the form

vector = [element1, ...., element 2]

# will then apply the linear mapping (self.mapping) to the

vector

# will return the result

if len(vector) != self.domain_dim:

return "hold up! wait a minute! sumn aint right"

else:

return mp.multiply_matrix(self.mapping,

mp.transpose([vector]))

def is_subspace(self, subspace):

# check if subspace is a part of vector_space_1

for vector in subspace:

if vector not in self.matrix:

return False

return True

We can also check if a given vector space is a subspace by iterating through
the original vector space and verifying if each element is in the vector space.

3.1 Identifying The Type of Linear Mapping

There are a handful of different ways to classify a mapping. These can tell
us useful properties about a mapping:
ϕ : J → K

Injective if ∀x, y ∈ J : ϕ(x) = ϕ(y)
Surjective if ϕ(J) = K
Bijective if both hold

Homomorphism if its a linear mapping
Isomorphism if ϕ : J → K linear and bijective
Endomorphism if ϕ : J → J linear

21



Automorphism if ϕ : J → J linear and bijective
Our code to do this is listed below:

class LinearMapping:

def __init__(self, A, B, mapping=None):

self.domain_basis = [A[i] for i in

mp.identify_pivots(mp.transpose(A))]

self.domain_dim = len(self.domain_basis)

self.codomain_basis = [B[i] for i in

mp.identify_pivots(mp.transpose(B))]

self.codomain_dim = len(self.codomain_basis)

self.domain = [row[:] for row in A]

self.codomain = [row[:] for row in B]

self.mapping = mapping # needs to be a matrix or None

self.injective = True if mp.rank(self.mapping) ==

len(self.mapping[0]) else False

self.surjective = True if mp.rank(self.mapping) ==

len(self.mapping) else False

self.bijective = True if (self.injective == True and

self.surjective == True) else False

self.homomorphism = True # (by definition, duh)

self.isomorphism = True if (self.bijective == True) else False

# homomorphism already satisfied

self.endomorphism = True if len(A) == len(B) and len(A[0]) ==

len(B[0]) else False # True if dim(A) == dim(B) and

len(A[0]) == len(B[0]) else False

self.automorphism = True if self.endomorphism and

self.bijective else False

3.2 More advanced Basis Change

To find the transformation matrix between basis vectors requires the RREF
(Row-Reduced Echelon Form) of the new basis with the older basis vectors,
we place the original basis vectors on the left and the desired basis on the
right. We then take the right side of the augmented matrix; this can be
extended to 2 pairs of bases as shown below:

def find_transition(og_base, new_base, columned=False):

’’’

TAKES:
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original basis of subspace, og_base

new basis of subspace, new_base

it is important to pay mind to the shape of these basis

vectors.

eg, input [[1,3,4], [1,4,7]] where each sublist is a basis

vector will be treated as 3 col vectors,

[1,1], [3,4], and [4,7]. we added the columned flag to help

with this

’’’

if columned==False:

og_base, new_base = transpose(og_base), transpose(new_base)

# we find a transition matrix that changes the coordinates

expressed from one base to another base

# going from base 1 to base 2

if len(og_base) == len(new_base) and len(og_base[0]) ==

len(new_base[0]):

dim_to_take = len(og_base[0]) # we find what the dimensions

of the transmat will be

total = append_mat_right(new_base, og_base) # we create an

augmented matrix with new basis on left and old basis on

right

reduced = rref(total) # row reduce, O(n**3)

transition_matrix = list() # init our blank transition

matrix

for row in reduced: # we go through the reduced augmat to

find what should be added to the transition matrix

transition_matrix.append(row[-dim_to_take:])

return transition_matrix

# Full time O(n**3)

A′
ϕ = T−1AϕS
Where ϕ : J → K and ordered bases

B = (b1, ..., bn)B
′ = (b′1, ..., b

′
n)

C = (c1, ..., cn)C
′ = (c′1, ..., c

′
n)
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B is a tuple of the basis vectors in that given space and S represents the
mapping of coordinate from B to B’. T represents the mapping of coordinates
from C to C’ and Aϕ is the Transformation matrix from B to C.

def change_transformation_basis(ogtransfmat, ogb1, ogb2,

tildab1, tildab2, columned=False):

’’’

TAKES:

the transformation matrix/linmapping, ogtransfmat, of

standard form outlined in flowerbox

the original basis of domain, ogb1

the original basis of codomain, ogb2

the new basis of domain, tildab1

the new basis of codomain, tildab2

AS WITH find_transition, the base inputs can be finicky,

the columned flag should help. check that for more

indepth docs

’’’

if columned==False: # we make sure the basis inputs are the

correct form ie they are column vectors

ogb1, ogb2, tildab1, tildab2 =

transpose(ogb1),transpose(ogb2),transpose(tildab1),transpose(tildab2)

transition1 = find_transition(tildab1, ogb1) # we find

transitino matrix from the new domain basis to the old

domain basis, O(n**3)

transition2 = inverse(find_transition(tildab2, ogb2)) # we find

inverse of transition matrix from new codomain basis to old

codomain basis, O(n**3)

return multiply_matrix(multiply_matrix(transition2,

ogtransfmat), transition1) # we multiply the matrices

according to formula, O(n**3)

# full time O(n**3)

24



4 More Advanced Matrix Operations

4.1 Solving Homogeneous System

Some matrices contain linearly dependent columns or rows making certain
variables ”free”. We learned about the -1 trick for solving such matrices.

def solve_homogeneous(coef_matrix):

# takes matrix of form outlined in flowerbox

# returns a matrix using the minus 1 trick to solve homogeneous

linear systems

coef_matrix = rref(coef_matrix) # takes the rref of the

coefficient matrix (system of linear eq) O(n**3)

pivotcols = identify_pivots(coef_matrix) # finds the pivot

columns of the rref matrix O(n**2)

notpiv_cols = list() # since this function is called because of

different size dimension matricies, there are going to be

necessary added piv-columns

for i in range(len(coef_matrix[0])): # iterates through the

columns O(n)

if i not in pivotcols: # Iterates through the list of pivot

columns

notpiv_cols.append(i) # appends the non pivot column to

the non-pivot col list

if notpiv_cols == []: # if the non-pivot columns are empty (in

other words had total rank)

return [0 for i in range(len(coef_matrix[0]))]

if len(coef_matrix) == len(coef_matrix[0]):

for idx in notpiv_cols:

coef_matrix[idx][idx] = -1

coef_matrix = transpose(coef_matrix)

final = [coef_matrix[idx] for idx in notpiv_cols]

return final

for idx in notpiv_cols: #Iterate through the non pivot columns

coef_matrix.insert(idx, [0 if i != idx else -1 for i in

range(len(coef_matrix[0]))]) # by the minus 1 trick, we

insert a row with minus 1 in the nth index to preserve
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diagonality

coef_matrix = transpose(coef_matrix) # we transpose the matrix

final = [coef_matrix[idx] for idx in notpiv_cols] # we return

the solution as a square matrix

return final

# O(n**3)

4.2 QR Decompositions

One of the most important ways to manipulate a matrix is to decompose
it into other matrices. Doing this can help us understand properties of the
original matrix and can let us draw conclusions about the data presented
within that matrix.

Additionally, we can use matrix decompositions to store a matrix of data
in smaller matrices - for example, we can greatly reduce the data we need to
store by using rank-k approximations.

One such decomposition is the QR decomposition, which will ultimately
enable us to find eigenvalues of a matrix.

In this decomposition, we find a matrix Q that is orthonormal and a
matrix R that is in upper-triangle form such that QR is equivalent to the
original matrix, A.

The algorithm to solve for the matrix Q involves the Graham-Schmidt
method. (Consult wikipedia for the full algorithm)

It should be noted that some issues arise when we pass a rank deficient
matrix, as finding the QR of such a matrix requires what is known as a
”reduced QR Decomp,” which we did not code due to time constraints.

def qrdecomp(matrix):

if mp.rank(matrix) != len(matrix):

raise ValueError("Matrix is rank deficient and cannot be

fully QR Decomposed")

matrix = mp.transpose(matrix)

q = list()

r = list()

uactive = None

ulist = list()

for idx, column in enumerate(matrix):
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if idx == 0:

uactive = column

else:

uactive = column

for oldu in ulist:

inprodscalar = ((dot(oldu, column)) /

(euclidean_norm(oldu))**2)

projected = mp.row_by_scalar(oldu, inprodscalar)

uactive = mp.subtract_row(uactive, projected)

norm = 1/(euclidean_norm(uactive))

e = mp.row_by_scalar(uactive, norm)

ulist.append(uactive)

q.append(e)

q = mp.transpose(q)

qinv = mp.inverse(q.copy())

r = mp.multiply_matrix(qinv,mp.transpose(matrix))

return q,r

4.3 Finding Eigenvalues and Eigenvectors Of A Matrix

We can use the QR decomposition to determine the eigenvalues of a ma-
trix. This is much more efficient than attempting to solve the characteristic
polynomial when it comes to a large matrices.

We are able to use the QR decomposition by exploiting the fact that
similar matrices will have the same eigenvalues (consult Google for more
information).

Essentially, by finding the QR decomposition, finding a new matrix of
RQ̇, and further reducing that into QR form. Eventually, what is given by
RQ̇ will converge to an upper triangle matrix. It is a fact that the eigenvalues
of an upper triangle matrix are its diagonals. Therefore, the eigenvalues of
the original matrix will be the eigenvalues of the upper triangle matrix we
converge to by iterating through QR decomps.

It should be noted that for matrices with complex solutions, we will not
end up converging to an upper triangle matrix, but rather to an upper triangle
matrix with a few seemingly random entires on the bottom half. We can use
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the entries to determine what the complex eigenvalues are.

def qrdecomp(matrix):

if mp.rank(matrix) != len(matrix):

raise ValueError("Matrix is rank deficient and cannot be

fully QR Decomposed")

matrix = mp.transpose(matrix)

q = list()

r = list()

uactive = None

ulist = list()

for idx, column in enumerate(matrix):

if idx == 0:

uactive = column

else:

uactive = column

for oldu in ulist:

inprodscalar = ((dot(oldu, column)) /

(euclidean_norm(oldu))**2)

projected = mp.row_by_scalar(oldu, inprodscalar)

uactive = mp.subtract_row(uactive, projected)

norm = 1/(euclidean_norm(uactive))

e = mp.row_by_scalar(uactive, norm)

ulist.append(uactive)

q.append(e)

q = mp.transpose(q)

qinv = mp.inverse(q.copy())

r = mp.multiply_matrix(qinv,mp.transpose(matrix))

return q,r

Next, we will find the eigenvectors by using the eigenvalues and solving the
homogeneous system of equations, (A− λI)x = 0 where x is the eigenvector
associated with λ.

We simply iterate through the eigenvalues.
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def eigvals(matrix, iterations = 1000, tolerance=6):

activemat = copy.deepcopy(matrix)

istriangle = False

for i in range(iterations):

# while not istriangle:

q, r = qrdecomp(activemat)

activemat = mp.multiply_matrix(r,q)

# istriangle = isuppertriangle(activemat, tolerance)

# g = isuppertriangle(activemat, tolerance)

# return activemat

if isuppertriangle(activemat, tolerance):

return mp.diags(activemat)

else:

eigvals = mp.diags(activemat)

for idx in range(len(activemat)-1):

if round(activemat[idx+1][idx], 8) != 0:

a = activemat[idx][idx]

b = activemat[idx][idx+1]

c = activemat[idx+1][idx]

d = activemat[idx+1][idx+1]

term1 = -(-a-d)

term2 = ((term1**2) - 4*(a*d - b*c))

positiveroot = (term1 + term2**(1/2))/2

negativeroot = (term1 - term2**(1/2))/2

del eigvals[idx:idx+2]
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eigvals.insert(idx,positiveroot)

eigvals.insert(idx+1,negativeroot)

idx+=1

return eigvals

def eigvecs(matrix, eigvalitr = 1000, eigvaltol = 6, vec_tol =

4):

eigval_list = eigvals(matrix, eigvalitr, eigvaltol)

matrix_size = len(matrix)

eigvec_dict = {}

for eigval in eigval_list:

if isinstance(eigval, complex):

eigval = (round(eigval.real, eigvaltol) +

round(eigval.imag, eigvaltol)*1j)

else:

eigval = round(eigval, eigvaltol)

idt = mp.make_identity(matrix_size)

idt = mp.matrix_by_scalar(idt, eigval)

subtracted_mat = mp.subtract_matrices(matrix, idt)

# subtracted_mat = mp.mround(subtracted_mat, vec_tol)

subtracted_mat = mp.echelon(subtracted_mat)

subtracted_mat = mp.mround(subtracted_mat, vec_tol)

sln = mp.solve_homogeneous(subtracted_mat)

eigvec_dict[eigval] = sln

return eigvec_dict

4.4 Finding the Eiegendecomposition

To find the Eiegendecomposition, we can use the eiegenvectors function we
have from earlier to compute the decomposition. Then create the basis ma-
trix with eiegenvectors (P). Then we employ the forumla where A is the
orginal matrix:
P−1AP

30



This will be integral to the Singular Value Decomposition

def eigendecomp(matrix, eigvalitr = 1000, eigvaltol = 6,

vec_tol = 4, normalize=True):

eigvec_dict = eigvecs(matrix, eigvalitr, eigvaltol, vec_tol)

p = list()

d = list()

i = 0

for eigval, eigvec in eigvec_dict.items():

if normalize == True:

scalar = euclidean_norm(eigvec[0])

eigvec = mp.matrix_by_scalar(eigvec, (1/scalar))

d.append([0 if idx != i else eigval for idx in

range(len(matrix))])

p.append(eigvec[0])

i += 1

p = mp.transpose(p)

pinv = mp.inverse(p)

return p, d, pinv

4.5 Finding the Singular Value Decomposition

To find the SVD, we can take the transpose of the original matrix and mul-
tiply them. ATA Then you take the eiegenvalues of that and put it on the
diagonals to get the matrix (D) and make all the columns the unit vector to
get matrix (P) PDP T Then you create the singular value matrix which is
just the square root of the eiegenvalues placed along the diagonal depending
on the rank of the original matrix and must be the same size as the original.
PV

∑
= A

def svd(matrix, eigvalitr = 1000, eigvaltol = 6, vec_tol = 4,

normalize=True):

v, d, useless =

eigendecomp((mp.multiply_matrix(mp.transpose(matrix),
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matrix)), normalize)

# u = eigendecomp((mp.multiply_matrix(a, mp.transpose(a))),

normalize)[0]

v = mp.matrix_by_scalar(v, -1)

u = list()

sig = list()

for idx in range(len(matrix)):

sig.append([0 if idx != i else ((d[idx][idx])**(1/2)) for i

in range(len(d[idx]))])

for idx in range(len(sig)):

u_idx = mp.multiply_matrix(matrix,

mp.transpose([mp.get_col(v, idx)]))

u_idx = mp.matrix_by_scalar(u_idx, 1/sig[idx][idx])

u.append(mp.transpose(u_idx)[0])

u = mp.transpose(u)

return u, sig, mp.transpose(v)
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